Compare commits
1 Commits
feat/refre
...
feat/chat-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a03e74d660 |
43
apps/web/src/app/(signing)/sign/[token]/chat-pdf.tsx
Normal file
43
apps/web/src/app/(signing)/sign/[token]/chat-pdf.tsx
Normal file
@@ -0,0 +1,43 @@
|
||||
import fs from 'fs/promises';
|
||||
|
||||
import { loadFileIntoPinecone } from '@documenso/lib/server-only/pinecone';
|
||||
import { getFile } from '@documenso/lib/universal/upload/get-file';
|
||||
import { DocumentDataType } from '@documenso/prisma/client';
|
||||
import { Card, CardContent } from '@documenso/ui/primitives/card';
|
||||
|
||||
import { Chat } from './chat';
|
||||
|
||||
type ChatPDFProps = {
|
||||
id: string;
|
||||
type: DocumentDataType;
|
||||
data: string;
|
||||
initialData: string;
|
||||
};
|
||||
|
||||
export async function ChatPDF({ documentData }: { documentData: ChatPDFProps }) {
|
||||
const docData = await getFile(documentData);
|
||||
const fileName = `${documentData.id}}.pdf`;
|
||||
|
||||
try {
|
||||
await fs.access(fileName, fs.constants.F_OK);
|
||||
} catch (err) {
|
||||
await fs.writeFile(fileName, docData);
|
||||
}
|
||||
await loadFileIntoPinecone(fileName);
|
||||
|
||||
return (
|
||||
<Card className="my-8" gradient={true} degrees={200}>
|
||||
<CardContent className="mt-8 flex flex-col">
|
||||
<h2 className="text-foreground text-2xl font-semibold">Chat with the PDF</h2>
|
||||
<p className="text-muted-foreground mt-2 text-sm">Ask any questions regarding the PDF</p>
|
||||
<hr className="border-border mb-4 mt-4" />
|
||||
<Chat />
|
||||
<hr className="border-border mb-4 mt-4" />
|
||||
<p className="text-muted-foreground text-sm italic">
|
||||
Disclaimer: Never trust AI 100%. Always double check the documents yourself. Documenso is
|
||||
not liable for any issue arising from you relying 100% on the AI.
|
||||
</p>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
56
apps/web/src/app/(signing)/sign/[token]/chat.tsx
Normal file
56
apps/web/src/app/(signing)/sign/[token]/chat.tsx
Normal file
@@ -0,0 +1,56 @@
|
||||
'use client';
|
||||
|
||||
import { useChat } from 'ai/react';
|
||||
|
||||
import { cn } from '@documenso/ui/lib/utils';
|
||||
import { Button } from '@documenso/ui/primitives/button';
|
||||
import { Input } from '@documenso/ui/primitives/input';
|
||||
|
||||
type Props = {};
|
||||
|
||||
export function Chat({}: Props) {
|
||||
const { input, handleInputChange, handleSubmit, messages } = useChat({
|
||||
api: '/api/chat',
|
||||
});
|
||||
|
||||
// continue https://youtu.be/bZFedu-0emE?si=2JGSJfSQ38aXSlp2&t=10941
|
||||
|
||||
return (
|
||||
<div>
|
||||
<div className="flex flex-col gap-8">
|
||||
<ul>
|
||||
{messages.map((message, index) => (
|
||||
<li
|
||||
className={cn(
|
||||
'flex',
|
||||
message.role === 'user'
|
||||
? 'mb-6 ml-10 mt-6 flex justify-end'
|
||||
: 'mr-10 justify-start',
|
||||
)}
|
||||
key={index}
|
||||
>
|
||||
<span
|
||||
className={
|
||||
message.role === 'user'
|
||||
? 'bg-background text-foreground group relative rounded-lg border-2 p-4 backdrop-blur-[2px]'
|
||||
: 'bg-primary text-primary-foreground rounded-lg p-4 backdrop-blur-[2px]'
|
||||
}
|
||||
>
|
||||
{message.content}
|
||||
</span>
|
||||
</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
<form className="mb-2 mt-8 flex" onSubmit={handleSubmit}>
|
||||
<Input
|
||||
value={input}
|
||||
className="mr-6 w-1/2"
|
||||
onChange={handleInputChange}
|
||||
placeholder="Ask away..."
|
||||
/>
|
||||
<Button type="submit">Send</Button>
|
||||
</form>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -87,7 +87,7 @@ export const SigningForm = ({ document, recipient, fields }: SigningFormProps) =
|
||||
Please review the document before signing.
|
||||
</p>
|
||||
|
||||
<hr className="border-border mb-8 mt-4" />
|
||||
<hr className="border-border mb-8 mt-4 h-8 w-full" />
|
||||
|
||||
<div className="-mx-2 flex flex-1 flex-col gap-4 overflow-y-auto px-2">
|
||||
<div className="flex flex-1 flex-col gap-y-4">
|
||||
|
||||
@@ -14,6 +14,7 @@ import { Card, CardContent } from '@documenso/ui/primitives/card';
|
||||
import { ElementVisible } from '@documenso/ui/primitives/element-visible';
|
||||
import { LazyPDFViewer } from '@documenso/ui/primitives/lazy-pdf-viewer';
|
||||
|
||||
import { ChatPDF } from './chat-pdf';
|
||||
import { DateField } from './date-field';
|
||||
import { EmailField } from './email-field';
|
||||
import { SigningForm } from './form';
|
||||
@@ -106,6 +107,7 @@ export default async function SigningPage({ params: { token } }: SigningPageProp
|
||||
.otherwise(() => null),
|
||||
)}
|
||||
</ElementVisible>
|
||||
<ChatPDF documentData={documentData} />
|
||||
</div>
|
||||
</SigningProvider>
|
||||
);
|
||||
|
||||
54
apps/web/src/pages/api/chat/index.ts
Normal file
54
apps/web/src/pages/api/chat/index.ts
Normal file
@@ -0,0 +1,54 @@
|
||||
import { Message, OpenAIStream, StreamingTextResponse } from 'ai';
|
||||
import { Configuration, OpenAIApi } from 'openai-edge';
|
||||
|
||||
import { getContext } from '@documenso/lib/server-only/context';
|
||||
|
||||
export const runtime = 'edge';
|
||||
|
||||
const config = new Configuration({
|
||||
apiKey: process.env.OPENAI_API_KEY!,
|
||||
});
|
||||
|
||||
const openai = new OpenAIApi(config);
|
||||
|
||||
export default async function handler(request: Request) {
|
||||
// console.log(request.method);
|
||||
// request.json().then((data) => console.log(data));
|
||||
// return Response.json({ message: 'world' });
|
||||
|
||||
try {
|
||||
const data = await request.json();
|
||||
const lastMessage = data.messages[data.messages.length - 1];
|
||||
const context = await getContext(lastMessage.content);
|
||||
console.log('context', context);
|
||||
const prompt = {
|
||||
role: 'system',
|
||||
content: `AI assistant is a brand new, powerful, human-like artificial intelligence.
|
||||
The traits of AI include expert knowledge, helpfulness, cleverness, and articulateness.
|
||||
AI is a well-behaved and well-mannered individual.
|
||||
AI is always friendly, kind, and inspiring, and he is eager to provide vivid and thoughtful responses to the user.
|
||||
AI has the sum of all knowledge in their brain, and is able to accurately answer nearly any question about any topic in conversation.
|
||||
AI assistant is a big fan of Pinecone and Vercel.
|
||||
START CONTEXT BLOCK
|
||||
${context}
|
||||
END OF CONTEXT BLOCK
|
||||
AI assistant will take into account any CONTEXT BLOCK that is provided in a conversation.
|
||||
If the context does not provide the answer to question, the AI assistant will say, "I'm sorry, but I don't know the answer to that question".
|
||||
AI assistant will not apologize for previous responses, but instead will indicated new information was gained.
|
||||
AI assistant will not invent anything that is not drawn directly from the context.
|
||||
`,
|
||||
};
|
||||
const response = await openai.createChatCompletion({
|
||||
model: 'gpt-3.5-turbo',
|
||||
messages: [prompt, ...data.messages.filter((message: Message) => message.role === 'user')],
|
||||
stream: true,
|
||||
});
|
||||
|
||||
const stream = OpenAIStream(response);
|
||||
|
||||
return new StreamingTextResponse(stream);
|
||||
} catch (error) {
|
||||
console.error('There was an error getting embeddings: ', error);
|
||||
throw new Error('There was an error getting embeddings');
|
||||
}
|
||||
}
|
||||
1740
package-lock.json
generated
1740
package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -46,6 +46,13 @@
|
||||
"packages/*"
|
||||
],
|
||||
"dependencies": {
|
||||
"@pinecone-database/pinecone": "^1.1.1",
|
||||
"@types/md5": "^2.3.4",
|
||||
"ai": "^2.2.16",
|
||||
"langchain": "^0.0.169",
|
||||
"md5": "^2.3.0",
|
||||
"openai-edge": "^1.2.2",
|
||||
"pdf-parse": "^1.1.1",
|
||||
"recharts": "^2.7.2"
|
||||
}
|
||||
}
|
||||
|
||||
35
packages/lib/server-only/context.ts
Normal file
35
packages/lib/server-only/context.ts
Normal file
@@ -0,0 +1,35 @@
|
||||
import { Pinecone } from '@pinecone-database/pinecone';
|
||||
|
||||
import { getEmbeddings } from './embeddings';
|
||||
|
||||
export async function getMatchesFromEmbeddings(embeddings: number[]) {
|
||||
const pc = new Pinecone({
|
||||
apiKey: process.env.PINECONE_API_KEY!,
|
||||
environment: process.env.PINECONE_ENV!,
|
||||
});
|
||||
|
||||
const pineconeIndex = pc.index('documenso-chat-with-pdf-test');
|
||||
|
||||
try {
|
||||
const queryResult = await pineconeIndex.query({
|
||||
topK: 5,
|
||||
vector: embeddings,
|
||||
includeMetadata: true,
|
||||
});
|
||||
|
||||
return queryResult.matches || [];
|
||||
} catch (error) {
|
||||
console.error('There was an error getting matches from embeddings: ', error);
|
||||
throw new Error('There was an error getting matches from embeddings');
|
||||
}
|
||||
}
|
||||
|
||||
export async function getContext(query: string) {
|
||||
const queryEmbeddings = await getEmbeddings(query);
|
||||
const matches = await getMatchesFromEmbeddings(queryEmbeddings);
|
||||
|
||||
const qualifyingMatches = matches.filter((match) => match.score && match.score > 0.7);
|
||||
const docs = qualifyingMatches.map((match) => match.metadata?.text);
|
||||
|
||||
return docs.join('\n').substring(0, 3000);
|
||||
}
|
||||
23
packages/lib/server-only/embeddings.ts
Normal file
23
packages/lib/server-only/embeddings.ts
Normal file
@@ -0,0 +1,23 @@
|
||||
import { Configuration, OpenAIApi } from 'openai-edge';
|
||||
|
||||
const config = new Configuration({
|
||||
apiKey: process.env.OPENAI_API_KEY!,
|
||||
});
|
||||
|
||||
const openai = new OpenAIApi(config);
|
||||
|
||||
export async function getEmbeddings(text: string) {
|
||||
try {
|
||||
const response = await openai.createEmbedding({
|
||||
model: 'text-embedding-ada-002',
|
||||
input: text.replace(/\n/g, ' '),
|
||||
});
|
||||
|
||||
const result = await response.json();
|
||||
|
||||
return result.data[0].embedding;
|
||||
} catch (error) {
|
||||
console.error('There was an error getting embeddings: ', error);
|
||||
throw new Error('There was an error getting embeddings');
|
||||
}
|
||||
}
|
||||
113
packages/lib/server-only/pinecone.ts
Normal file
113
packages/lib/server-only/pinecone.ts
Normal file
@@ -0,0 +1,113 @@
|
||||
import { Pinecone } from '@pinecone-database/pinecone';
|
||||
import { PDFLoader } from 'langchain/document_loaders/fs/pdf';
|
||||
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
|
||||
import md5 from 'md5';
|
||||
|
||||
import { getEmbeddings } from './embeddings';
|
||||
|
||||
let pc: Pinecone | null = null;
|
||||
|
||||
// export type PDFPage = {
|
||||
// pageContent: string;
|
||||
// metadata: {
|
||||
// source: string;
|
||||
// pdf: {
|
||||
// version: string;
|
||||
// info: {
|
||||
// pdfformatversion: string;
|
||||
// isacroformpresent: boolean;
|
||||
// isxfapresent: boolean;
|
||||
// creator: string;
|
||||
// producer: string;
|
||||
// ceationdate: string;
|
||||
// moddate: string;
|
||||
// };
|
||||
// metadata: null;
|
||||
// totalPages: number;
|
||||
// };
|
||||
// loc: {
|
||||
// pageNumber: number;
|
||||
// };
|
||||
// };
|
||||
// };
|
||||
|
||||
export type PDFPage = unknown;
|
||||
export const getPineconeClient = () => {
|
||||
if (!pc) {
|
||||
pc = new Pinecone({
|
||||
apiKey: process.env.PINECONE_API_KEY!,
|
||||
environment: process.env.PINECONE_ENV!,
|
||||
});
|
||||
}
|
||||
|
||||
return pc;
|
||||
};
|
||||
|
||||
export async function loadFileIntoPinecone(file: string) {
|
||||
if (!file) {
|
||||
throw new Error('No file provided');
|
||||
}
|
||||
|
||||
const loader = new PDFLoader(file);
|
||||
const pages: PDFPage[] = await loader.load();
|
||||
|
||||
const documents = await Promise.all(pages.map(prepareDocument));
|
||||
|
||||
const vectors = await Promise.all(documents.flat().map(embedDocuments));
|
||||
|
||||
const client = getPineconeClient();
|
||||
const pineconeIndex = client.index('documenso-chat-with-pdf-test');
|
||||
|
||||
try {
|
||||
await pineconeIndex.upsert(vectors);
|
||||
} catch (error) {
|
||||
console.error('There was an error upserting vectors: ', error);
|
||||
}
|
||||
}
|
||||
|
||||
async function embedDocuments(doc) {
|
||||
try {
|
||||
const embeddings = await getEmbeddings(doc.pageContent);
|
||||
const hash = md5(doc.pageContent);
|
||||
|
||||
return {
|
||||
id: hash,
|
||||
values: embeddings,
|
||||
metadata: {
|
||||
text: doc.metadata.text,
|
||||
pageNumber: doc.metadata.pageNumber,
|
||||
},
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('There was an error embedding documents: ', error);
|
||||
throw new Error('There was an error embedding documents');
|
||||
}
|
||||
}
|
||||
|
||||
export const truncateStringByBytes = (str: string, numBytes: number) => {
|
||||
const encoder = new TextEncoder();
|
||||
|
||||
return new TextDecoder('utf-8').decode(encoder.encode(str).slice(0, numBytes));
|
||||
};
|
||||
|
||||
async function prepareDocument(page: PDFPage) {
|
||||
let { pageContent, metadata } = page;
|
||||
pageContent = pageContent.replace(/\n/g, '');
|
||||
|
||||
const splitter = new RecursiveCharacterTextSplitter();
|
||||
const docs = await splitter.splitDocuments([
|
||||
{
|
||||
pageContent,
|
||||
metadata: {
|
||||
pageNumber: metadata.loc.pageNumber,
|
||||
text: truncateStringByBytes(pageContent, 36000),
|
||||
},
|
||||
},
|
||||
]);
|
||||
|
||||
return docs;
|
||||
}
|
||||
|
||||
function convertToAscii(input: string) {
|
||||
return input.replace(/[^\x00-\x7F]/g, '');
|
||||
}
|
||||
Reference in New Issue
Block a user