2
0
Files
bot/packages/forge/blocks/anthropic/actions/createChatMessage.tsx
2024-04-03 14:35:18 +02:00

179 lines
5.1 KiB
TypeScript

import { createAction, option } from '@typebot.io/forge'
import { auth } from '../auth'
import { AnthropicStream } from 'ai'
import { anthropicModels, defaultAnthropicOptions } from '../constants'
import { parseChatMessages } from '../helpers/parseChatMessages'
import { isDefined } from '@typebot.io/lib'
const nativeMessageContentSchema = {
content: option.string.layout({
inputType: 'textarea',
placeholder: 'Content',
}),
}
const userMessageItemSchema = option
.object({
role: option.literal('user'),
})
.extend(nativeMessageContentSchema)
const assistantMessageItemSchema = option
.object({
role: option.literal('assistant'),
})
.extend(nativeMessageContentSchema)
const dialogueMessageItemSchema = option.object({
role: option.literal('Dialogue'),
dialogueVariableId: option.string.layout({
inputType: 'variableDropdown',
placeholder: 'Dialogue variable',
}),
startsBy: option.enum(['user', 'assistant']).layout({
label: 'starts by',
direction: 'row',
defaultValue: 'user',
}),
})
export const options = option.object({
model: option.enum(anthropicModels).layout({
defaultValue: defaultAnthropicOptions.model,
}),
messages: option
.array(
option.discriminatedUnion('role', [
userMessageItemSchema,
assistantMessageItemSchema,
dialogueMessageItemSchema,
])
)
.layout({ accordion: 'Messages', itemLabel: 'message', isOrdered: true }),
systemMessage: option.string.layout({
accordion: 'Advanced Settings',
label: 'System prompt',
direction: 'row',
inputType: 'textarea',
}),
temperature: option.number.layout({
accordion: 'Advanced Settings',
label: 'Temperature',
direction: 'row',
defaultValue: defaultAnthropicOptions.temperature,
}),
maxTokens: option.number.layout({
accordion: 'Advanced Settings',
label: 'Max Tokens',
direction: 'row',
defaultValue: defaultAnthropicOptions.maxTokens,
}),
responseMapping: option
.saveResponseArray(['Message Content'] as const)
.layout({
accordion: 'Save Response',
}),
})
const transformToChatCompletionOptions = (options: any) => ({
...options,
action: 'Create chat completion',
responseMapping: options.responseMapping?.map((res: any) =>
res.item === 'Message Content' ? { ...res, item: 'Message content' } : res
),
})
export const createChatMessage = createAction({
name: 'Create Chat Message',
auth,
options,
turnableInto: [
{
blockId: 'mistral',
transform: transformToChatCompletionOptions,
},
{
blockId: 'openai',
transform: transformToChatCompletionOptions,
},
{ blockId: 'open-router', transform: transformToChatCompletionOptions },
{ blockId: 'together-ai', transform: transformToChatCompletionOptions },
],
getSetVariableIds: ({ responseMapping }) =>
responseMapping?.map((res) => res.variableId).filter(isDefined) ?? [],
run: {
server: async ({ credentials: { apiKey }, options, variables, logs }) => {
const { Anthropic } = await import('@anthropic-ai/sdk')
const client = new Anthropic({
apiKey: apiKey,
})
const messages = parseChatMessages({ options, variables })
try {
const reply = await client.messages.create({
messages,
model: options.model ?? defaultAnthropicOptions.model,
system: options.systemMessage,
temperature: options.temperature
? Number(options.temperature)
: undefined,
max_tokens: options.maxTokens
? Number(options.maxTokens)
: defaultAnthropicOptions.maxTokens,
})
messages.push(reply)
options.responseMapping?.forEach((mapping) => {
if (!mapping.variableId) return
if (!mapping.item || mapping.item === 'Message Content')
variables.set(mapping.variableId, reply.content[0].text)
})
} catch (error) {
if (error instanceof Anthropic.APIError) {
logs.add({
status: 'error',
description: `${error.status} ${error.name}`,
details: error.message,
})
} else {
throw error
}
}
},
stream: {
getStreamVariableId: (options) =>
options.responseMapping?.find(
(res) => res.item === 'Message Content' || !res.item
)?.variableId,
run: async ({ credentials: { apiKey }, options, variables }) => {
const { Anthropic } = await import('@anthropic-ai/sdk')
const client = new Anthropic({
apiKey: apiKey,
})
const messages = parseChatMessages({ options, variables })
const response = await client.messages.create({
messages,
model: options.model ?? defaultAnthropicOptions.model,
system: options.systemMessage,
temperature: options.temperature
? Number(options.temperature)
: undefined,
max_tokens: options.maxTokens
? Number(options.maxTokens)
: defaultAnthropicOptions.maxTokens,
stream: true,
})
return AnthropicStream(response)
},
},
},
})