795 lines
20 KiB
Plaintext
795 lines
20 KiB
Plaintext
---
|
|
title: 'How to Build a React Chatbot: Three Methods Explained'
|
|
description: 'Learn how to build a React chatbot using three methods: no-code, API integration, and full-stack development.'
|
|
publishedAt: '2024-07-11'
|
|
---
|
|
|
|
To enhance user engagement in your React application, adding a chatbot can be a game changer. You don't need to get overwhelmed by complex code. React chatbots offer interactive and responsive interfaces.
|
|
|
|
Building a React chatbot isn't as hard as it seems. This article explores three methods to build your own chatbot. We'll cover no-code solutions to full-stack implementations. Whether you're an experienced developer or new to React, you'll find an approach that fits your skill level and project needs. Ready to improve your user experience with a **custom React chatbot**? Let's dive in.
|
|
|
|
## What is a React Chatbot?
|
|
|
|
### Definition of a React Chatbot
|
|
|
|
A **React chatbot** is an interactive component in a React application. It simulates human-like conversations with users, enhancing engagement and delivering information efficiently.
|
|
|
|
### How Chatbots Work Within React Applications
|
|
|
|
React chatbots use React's component-based architecture to create modular and reusable chat interfaces. They usually include:
|
|
|
|
1. A chat window component
|
|
2. Message display components
|
|
3. Input field for user messages
|
|
4. State management for conversation flow
|
|
5. API integration for processing messages and generating responses
|
|
|
|
The chatbot's logic involves conditional rendering, hooks for state management, and asynchronous functions for API calls.
|
|
|
|
### Benefits of Integrating a Chatbot in Your React App
|
|
|
|
- **24/7 availability** for user inquiries
|
|
- **Reduced customer support workload**
|
|
- **Personalized user experiences**
|
|
- **Streamlined information gathering**
|
|
- **Improved user engagement and retention**
|
|
|
|
### Overview of Typebot as a No-Code Chatbot Builder
|
|
|
|
Typebot is an open-source platform that makes it easy to create chatbots for React applications. Its key features include:
|
|
|
|
- Drag-and-drop interface for bot design
|
|
- Visual flow builder for conversation logic
|
|
- Pre-built components like text bubbles, input fields, and buttons
|
|
- Easy integration with React via API or embed code
|
|
- Customizable themes to match your app's design
|
|
|
|
### Real-World Use Cases of React Chatbots
|
|
|
|
<Table
|
|
headers={['Industry', 'Use Case', 'Example']}
|
|
rows={[
|
|
[
|
|
'E-commerce',
|
|
'Product recommendations',
|
|
'Suggesting items based on browsing history',
|
|
],
|
|
[
|
|
'Healthcare',
|
|
'Symptom checker',
|
|
'Guiding users through initial health assessments',
|
|
],
|
|
[
|
|
'Finance',
|
|
'Account management',
|
|
'Helping users check balances and make transfers',
|
|
],
|
|
[
|
|
'Education',
|
|
'Course enrollment',
|
|
'Assisting students in selecting and registering for classes',
|
|
],
|
|
[
|
|
'Travel',
|
|
'Booking assistance',
|
|
'Helping users find and book flights or accommodations',
|
|
],
|
|
]}
|
|
/>
|
|
|
|
**React chatbots** are versatile tools. They can significantly enhance user experience across various domains, providing immediate assistance and personalized interactions.
|
|
|
|
## Method 1: Creating a Simple React Chatbot Using Typebot
|
|
|
|
### Setting Up Typebot Account
|
|
|
|
1. Visit typebot.io and sign up for an account.
|
|
2. Verify your email address.
|
|
3. Log in to the Typebot dashboard.
|
|
|
|
### Designing Your Chatbot using Typebot's Drag-and-Drop Interface
|
|
|
|
1. Click "Create a new typebot".
|
|
2. Choose a template or start from scratch.
|
|
3. Add blocks to your flow:
|
|
- Text bubbles for bot messages.
|
|
- Input fields for user responses.
|
|
- Buttons for multiple-choice options.
|
|
4. Connect blocks to create conversation logic.
|
|
5. Use conditional statements to branch conversations.
|
|
|
|
<Callout status="info" title="Info">
|
|
Looking for inspiration to create your first chatbot? We gathered some
|
|
[chatbot script exampes](https://typebot.io/blog/chatbot-script-examples) to
|
|
help you get started.
|
|
</Callout>
|
|
|
|
### Exporting and Integrating Typebot Code in React
|
|
|
|
1. In Typebot, go to "Share" > "Web".
|
|
2. Choose the "React" embed option.
|
|
3. Copy the provided code snippet.
|
|
4. In your React project, install **Typebot libraries**:
|
|
|
|
```bash
|
|
npm install @typebot.io/js @typebot.io/react
|
|
```
|
|
|
|
5. Create a new component in your React app:
|
|
|
|
```jsx
|
|
import { Bubble } from '@typebot.io/react'
|
|
|
|
const ChatbotComponent = () => {
|
|
return <Bubble typebot="YOUR_TYPEBOT_ID" />
|
|
}
|
|
|
|
export default ChatbotComponent
|
|
```
|
|
|
|
### Adding Typebot Chatbot to Existing React Applications
|
|
|
|
1. Import the **ChatbotComponent** where needed:
|
|
|
|
```jsx
|
|
import ChatbotComponent from './ChatbotComponent'
|
|
|
|
function App() {
|
|
return (
|
|
<div className="App">
|
|
<h1>My React App</h1>
|
|
<ChatbotComponent />
|
|
</div>
|
|
)
|
|
}
|
|
```
|
|
|
|
2. Customize the chatbot's appearance:
|
|
|
|
```jsx
|
|
<Bubble
|
|
typebot="your-typebot-id"
|
|
theme={{ button: { backgroundColor: '#0042DA' } }}
|
|
prefilledVariables={{
|
|
'User Name': 'John Doe',
|
|
'Page URL': window.location.href,
|
|
}}
|
|
/>
|
|
```
|
|
|
|
Here is what you will get:
|
|
|
|
<Image
|
|
src="/images/blog/react-chatbot/demo-chat-method-1.jpg"
|
|
alt="Demo Chat Method 1"
|
|
width={2074}
|
|
height={1776}
|
|
/>
|
|
|
|
### Running and Testing Your Simple React Chatbot
|
|
|
|
1. Start your React development server:
|
|
|
|
```bash
|
|
npm start
|
|
```
|
|
|
|
2. Open your app in a browser.
|
|
3. Interact with the chatbot to test conversation flows.
|
|
4. Check for:
|
|
- Correct message display.
|
|
- Proper input handling.
|
|
- Accurate conditional logic execution.
|
|
5. Use Typebot's analytics to monitor performance.
|
|
6. Iterate on your design based on user interactions and feedback.
|
|
|
|
These steps show you how to quickly create and integrate a functional chatbot into your React application using **Typebot's no-code solution**.
|
|
|
|
<Cta />
|
|
|
|
## Method 2: Creating the Frontend and Calling the Typebot API
|
|
|
|
We will do the same thing, except that we will build our own chat UI. It will allow us to customize as we want.
|
|
|
|
### Creating a React App with Vite
|
|
|
|
1. Initialize a new React project:
|
|
|
|
```bash
|
|
npm create vite@latest my-chatbot -- --template react-ts
|
|
cd my-chatbot
|
|
npm install
|
|
```
|
|
|
|
2. Install additional dependencies:
|
|
|
|
```bash
|
|
npm install axios daisyui@latest
|
|
```
|
|
|
|
3. Configure Tailwind CSS and DaisyUI in `tailwind.config.js`:
|
|
|
|
```javascript
|
|
module.exports = {
|
|
content: ['./src/**/*.{js,jsx,ts,tsx}'],
|
|
plugins: [require('daisyui')],
|
|
}
|
|
```
|
|
|
|
### Setting Up Typebot API
|
|
|
|
1. Create a BLS bot account and design your chatbot flow.
|
|
2. Generate an API token in Typebot settings.
|
|
3. Note your Typebot's public ID.
|
|
|
|
### Creating Chatbot Components in React using Daisy UI
|
|
|
|
Create a `ChatComponent.tsx` file:
|
|
|
|
```tsx
|
|
import React, { useState } from 'react'
|
|
|
|
const ChatComponent: React.FC = () => {
|
|
const [messages, setMessages] = useState<
|
|
Array<{ text: string; isUser: boolean }>
|
|
>([])
|
|
const [inputMessage, setInputMessage] = useState('')
|
|
|
|
const handleSendMessage = async () => {
|
|
if (inputMessage.trim() === '') return
|
|
|
|
setMessages([...messages, { text: inputMessage, isUser: true }])
|
|
setInputMessage('')
|
|
|
|
// API call will be implemented here
|
|
}
|
|
|
|
return (
|
|
<div className="flex flex-col h-screen">
|
|
<div className="flex-1 overflow-y-auto p-4">
|
|
{messages.map((message, index) => (
|
|
<div
|
|
key={index}
|
|
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
|
>
|
|
<div
|
|
className={`chat-bubble ${
|
|
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
|
}`}
|
|
>
|
|
{message.text}
|
|
</div>
|
|
</div>
|
|
))}
|
|
</div>
|
|
<div className="p-4 bg-base-200">
|
|
<div className="flex">
|
|
<input
|
|
type="text"
|
|
value={inputMessage}
|
|
onChange={(e) => setInputMessage(e.target.value)}
|
|
className="input input-bordered flex-1 mr-2"
|
|
placeholder="Type your message..."
|
|
/>
|
|
<button onClick={handleSendMessage} className="btn btn-primary">
|
|
Send
|
|
</button>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
)
|
|
}
|
|
|
|
export default ChatComponent
|
|
```
|
|
|
|
### Fetching Responses from Typebot API
|
|
|
|
Implement API calls in `handleSendMessage`:
|
|
|
|
```typescript
|
|
import axios from 'axios'
|
|
|
|
const TYPEBOT_API_URL = 'https://typebot.io/api/v1/typebots'
|
|
const PUBLIC_ID = 'your_public_id'
|
|
const [sessionId, setSessionId] = useState<string | null>(null)
|
|
|
|
const handleSendMessage = async () => {
|
|
if (inputMessage.trim() === '') return
|
|
|
|
setMessages([...messages, { text: inputMessage, isUser: true }])
|
|
setInputMessage('')
|
|
|
|
try {
|
|
let response
|
|
if (!sessionId) {
|
|
response = await axios.post(`${TYPEBOT_API_URL}/${PUBLIC_ID}/startChat`, {
|
|
message: inputMessage,
|
|
})
|
|
setSessionId(response.data.sessionId)
|
|
} else {
|
|
response = await axios.post(
|
|
`${TYPEBOT_API_URL}/${PUBLIC_ID}/continueChat`,
|
|
{
|
|
sessionId,
|
|
message: inputMessage,
|
|
}
|
|
)
|
|
}
|
|
|
|
const botMessages = response.data.messages.map(
|
|
(msg: { content: string }) => ({
|
|
text: msg.content.richText[0].children
|
|
.map((children) => children.text)
|
|
.join(' '),
|
|
isUser: false,
|
|
})
|
|
)
|
|
|
|
setMessages((prevMessages) => [...prevMessages, ...botMessages])
|
|
} catch (error) {
|
|
console.error('Error sending message:', error)
|
|
}
|
|
}
|
|
```
|
|
|
|
### Handling User Inputs and Responses in UI
|
|
|
|
Update the UI to display bot responses:
|
|
|
|
```tsx
|
|
<div className="flex-1 overflow-y-auto p-4">
|
|
{messages.map((message, index) => (
|
|
<div
|
|
key={index}
|
|
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
|
>
|
|
<div
|
|
className={`chat-bubble ${
|
|
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
|
}`}
|
|
>
|
|
{message.text}
|
|
</div>
|
|
</div>
|
|
))}
|
|
</div>
|
|
```
|
|
|
|
### Error Handling in API Calls
|
|
|
|
Implement error handling:
|
|
|
|
```typescript
|
|
try {
|
|
// API calls
|
|
} catch (error) {
|
|
console.error('Error in chat flow:', error)
|
|
setMessages((prevMessages) => [
|
|
...prevMessages,
|
|
{ text: 'An error occurred. Please try again.', isUser: false },
|
|
])
|
|
}
|
|
```
|
|
|
|
Finally the final result looks like this:
|
|
|
|
<Image
|
|
src="/images/blog/react-chatbot/demo-chat-method-2.gif"
|
|
alt="Demo Chat Method 2"
|
|
width={800}
|
|
height={320}
|
|
/>
|
|
### Deploying and Testing
|
|
|
|
1. Build your React app:
|
|
|
|
```bash
|
|
npm run build
|
|
```
|
|
|
|
2. Deploy to a hosting service (e.g., Vercel, Netlify).
|
|
3. Test thoroughly:
|
|
- Conversation flow.
|
|
- Error scenarios.
|
|
- Performance under load.
|
|
|
|
By following these steps, you can create a custom **React chatbot frontend** that interacts with the Typebot API, providing a seamless chat experience for your users.
|
|
|
|
<Cta />
|
|
|
|
## Method 3: Building the Frontend and Backend Yourself
|
|
|
|
Here we will do the same thing, but by building our own backend!
|
|
|
|
### Initializing a React Project with Vite and TypeScript
|
|
|
|
1. Create a new Vite project:
|
|
|
|
```bash
|
|
npm create vite@latest my-fullstack-chatbot -- --template react-ts
|
|
cd my-fullstack-chatbot
|
|
npm install
|
|
```
|
|
|
|
2. Install additional dependencies:
|
|
|
|
```bash
|
|
npm install axios daisyui@latest
|
|
```
|
|
|
|
### Setting Up the Backend with Express.js
|
|
|
|
1. Create a `server` directory in the project root.
|
|
2. Initialize a new Node.js project:
|
|
|
|
```bash
|
|
cd server
|
|
npm init -y
|
|
npm install express cors dotenv
|
|
npm install --save-dev typescript @types/express @types/node @types/cors
|
|
```
|
|
|
|
3. Create a `tsconfig.json` file in the `server` directory:
|
|
|
|
```json
|
|
{
|
|
"compilerOptions": {
|
|
"target": "es6",
|
|
"module": "commonjs",
|
|
"outDir": "./dist",
|
|
"strict": true,
|
|
"esModuleInterop": true
|
|
}
|
|
}
|
|
```
|
|
|
|
### Creating RESTful API Endpoints for Chatbot Responses
|
|
|
|
Create a `server.ts` file in the `server` directory:
|
|
|
|
```typescript
|
|
import express from 'express'
|
|
import cors from 'cors'
|
|
import dotenv from 'dotenv'
|
|
|
|
dotenv.config()
|
|
|
|
const app = express()
|
|
app.use(cors())
|
|
app.use(express.json())
|
|
|
|
const PORT = process.env.PORT || 3001
|
|
|
|
app.post('/api/chat', (req, res) => {
|
|
const userMessage = req.body.message
|
|
// Chatbot logic will be implemented here
|
|
res.json({
|
|
response: `You said: "${userMessage}". This is a placeholder response.`,
|
|
})
|
|
})
|
|
|
|
app.listen(PORT, () => console.log(`Server running on port ${PORT}`))
|
|
```
|
|
|
|
### Creating Business Logic
|
|
|
|
Implement a simple chatbot logic in `server.ts`:
|
|
|
|
```typescript
|
|
const generateResponse = (message: string): string => {
|
|
if (message.toLowerCase().includes('hello')) {
|
|
return 'Hello! How can I assist you today?'
|
|
} else if (message.toLowerCase().includes('help')) {
|
|
return "I'm here to help. What do you need assistance with?"
|
|
} else if (message.toLowerCase().includes('bye')) {
|
|
return 'Goodbye! Have a great day!'
|
|
} else {
|
|
return "I'm not sure how to respond to that. Can you please rephrase your question?"
|
|
}
|
|
}
|
|
|
|
app.post('/api/chat', (req, res) => {
|
|
const userMessage = req.body.message
|
|
const botResponse = generateResponse(userMessage)
|
|
res.json({ response: botResponse })
|
|
})
|
|
```
|
|
|
|
### Designing the Chatbot Interface in React using Daisy UI
|
|
|
|
Create a `ChatComponent.tsx` in your React src directory:
|
|
|
|
```tsx
|
|
import React, { useState } from 'react'
|
|
import axios from 'axios'
|
|
|
|
const ChatComponent: React.FC = () => {
|
|
const [messages, setMessages] = useState<
|
|
Array<{ text: string; isUser: boolean }>
|
|
>([])
|
|
const [inputMessage, setInputMessage] = useState('')
|
|
|
|
const handleSendMessage = async () => {
|
|
if (inputMessage.trim() === '') return
|
|
|
|
setMessages([...messages, { text: inputMessage, isUser: true }])
|
|
setInputMessage('')
|
|
|
|
try {
|
|
const response = await axios.post('/api/chat', { message: inputMessage })
|
|
setMessages([
|
|
...messages,
|
|
{ text: inputMessage, isUser: true },
|
|
{ text: response.data.response, isUser: false },
|
|
])
|
|
} catch (error) {
|
|
console.error('Error sending message:', error)
|
|
}
|
|
}
|
|
|
|
return (
|
|
<div className="flex flex-col h-screen">
|
|
<div className="flex-1 overflow-y-auto p-4">
|
|
{messages.map((message, index) => (
|
|
<div
|
|
key={index}
|
|
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
|
>
|
|
<div
|
|
className={`chat-bubble ${
|
|
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
|
}`}
|
|
>
|
|
{message.text}
|
|
</div>
|
|
</div>
|
|
))}
|
|
</div>
|
|
<div className="p-4 bg-base-200">
|
|
<div className="flex">
|
|
<input
|
|
type="text"
|
|
value={inputMessage}
|
|
onChange={(e) => setInputMessage(e.target.value)}
|
|
className="input input-bordered flex-1 mr-2"
|
|
placeholder="Type your message..."
|
|
/>
|
|
<button onClick={handleSendMessage} className="btn btn-primary">
|
|
Send
|
|
</button>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
)
|
|
}
|
|
|
|
export default ChatComponent
|
|
```
|
|
|
|
### Deploying and Testing
|
|
|
|
1. Build your React app:
|
|
|
|
```bash
|
|
npm run build
|
|
```
|
|
|
|
2. Deploy to a hosting service (e.g., Vercel, Netlify).
|
|
3. Test thoroughly:
|
|
- Conversation flow.
|
|
- Error scenarios.
|
|
- Performance under load.
|
|
|
|
By following these steps, you can create a full-stack **React chatbot** with a custom backend, providing a seamless chat experience for your users.
|
|
|
|
### Connecting Frontend to Backend
|
|
|
|
Update the axios call in `ChatComponent.tsx` to use an environment variable:
|
|
|
|
```typescript
|
|
const API_URL = import.meta.env.VITE_API_URL || 'http://localhost:3001'
|
|
|
|
// In handleSendMessage:
|
|
const response = await axios.post(`${API_URL}/api/chat`, {
|
|
message: inputMessage,
|
|
})
|
|
```
|
|
|
|
### Error Handling and Debugging
|
|
|
|
Implement error handling in both frontend and backend:
|
|
|
|
```typescript
|
|
// Frontend (ChatComponent.tsx)
|
|
try {
|
|
// API call
|
|
} catch (error) {
|
|
console.error('Error sending message:', error)
|
|
setMessages((prevMessages) => [
|
|
...prevMessages,
|
|
{ text: 'An error occurred. Please try again.', isUser: false },
|
|
])
|
|
}
|
|
|
|
// Backend (server.ts)
|
|
app.use(
|
|
(
|
|
err: Error,
|
|
req: express.Request,
|
|
res: express.Response,
|
|
next: express.NextFunction
|
|
) => {
|
|
console.error(err.stack)
|
|
res.status(500).send('Something broke!')
|
|
}
|
|
)
|
|
```
|
|
|
|
### Best Practices for State Management
|
|
|
|
For more complex applications, consider using state management libraries like [Redux](https://redux.js.org/) or Zustand:
|
|
|
|
```bash
|
|
npm install @reduxjs/toolkit react-redux
|
|
```
|
|
|
|
### Deploying Full-Stack Chatbot Application
|
|
|
|
1. Build the React frontend:
|
|
|
|
```bash
|
|
npm run build
|
|
```
|
|
|
|
2. Compile TypeScript for the backend:
|
|
|
|
```bash
|
|
npx tsc
|
|
```
|
|
|
|
3. Deploy the backend to a Node.js hosting service (e.g., Heroku, DigitalOcean).
|
|
4. Deploy the frontend to a static hosting service (e.g., Netlify, Vercel).
|
|
5. Set up environment variables for API URL in frontend deployment.
|
|
6. Ensure CORS is properly configured on the backend for the frontend's domain.
|
|
|
|
This method provides full control over both frontend and backend, allowing for custom logic and integrations beyond what's possible with no-code solutions.
|
|
|
|
## Advanced Features and Customization
|
|
|
|
### Using Conditional Logic in Chatbots
|
|
|
|
Implement branching conversations based on user inputs:
|
|
|
|
```typescript
|
|
const generateResponse = (message: string, context: any): string => {
|
|
if (context.stage === 'greeting') {
|
|
if (message.toLowerCase().includes('help')) {
|
|
context.stage = 'help'
|
|
return 'What kind of help do you need? 1. Technical Support 2. Account Issues 3. Billing'
|
|
} else {
|
|
return 'Hello! How can I assist you today?'
|
|
}
|
|
} else if (context.stage === 'help') {
|
|
if (message.includes('1')) {
|
|
return 'For technical support, please describe your issue.'
|
|
} else if (message.includes('2')) {
|
|
return 'For account issues, please provide your account number.'
|
|
} else if (message.includes('3')) {
|
|
return "For billing inquiries, I'll transfer you to our billing department."
|
|
}
|
|
}
|
|
return "I'm not sure how to respond. Can you please clarify?"
|
|
}
|
|
```
|
|
|
|
### Integrations with Third-Party Services
|
|
|
|
#### OpenAI Integration
|
|
|
|
```typescript
|
|
import { Configuration, OpenAIApi } from 'openai'
|
|
|
|
// Initialize the OpenAI configuration
|
|
const configuration = new Configuration({
|
|
apiKey: process.env.OPENAI_API_KEY,
|
|
})
|
|
const openai = new OpenAIApi(configuration)
|
|
|
|
const generateResponse = async (
|
|
message: string,
|
|
context: any
|
|
): Promise<string> => {
|
|
try {
|
|
const completion = await openai.createChatCompletion({
|
|
model: 'gpt-3.5-turbo', // You can change this to a different model if needed
|
|
messages: [
|
|
{
|
|
role: 'system',
|
|
content: 'You are a helpful customer service assistant.',
|
|
},
|
|
{
|
|
role: 'user',
|
|
content: `Current stage: ${context.stage}. User message: ${message}`,
|
|
},
|
|
],
|
|
max_tokens: 150, // Adjust as needed
|
|
temperature: 0.7, // Adjust for more or less randomness in responses
|
|
})
|
|
|
|
return (
|
|
completion.data.choices[0].message?.content ||
|
|
"I'm sorry, I couldn't generate a response."
|
|
)
|
|
} catch (error) {
|
|
console.error('Error calling OpenAI API:', error)
|
|
return "I'm sorry, there was an error processing your request."
|
|
}
|
|
}
|
|
```
|
|
|
|
#### Google Sheets Integration
|
|
|
|
```typescript
|
|
import { google } from 'googleapis'
|
|
|
|
const sheets = google.sheets({
|
|
version: 'v4',
|
|
auth: process.env.GOOGLE_API_KEY,
|
|
})
|
|
|
|
const logToSheet = async (message: string, response: string) => {
|
|
await sheets.spreadsheets.values.append({
|
|
spreadsheetId: 'YOUR_SHEET_ID',
|
|
range: 'Sheet1!A:C',
|
|
valueInputOption: 'USER_ENTERED',
|
|
requestBody: {
|
|
values: [[new Date().toISOString(), message, response]],
|
|
},
|
|
})
|
|
}
|
|
```
|
|
|
|
### Theming and Custom UI Design
|
|
|
|
Customize DaisyUI theme in `tailwind.config.js`:
|
|
|
|
```javascript
|
|
module.exports = {
|
|
// ...
|
|
daisyui: {
|
|
themes: [
|
|
{
|
|
mytheme: {
|
|
primary: '#4B5563',
|
|
secondary: '#60A5FA',
|
|
accent: '#37CDBE',
|
|
neutral: '#3D4451',
|
|
'base-100': '#FFFFFF',
|
|
},
|
|
},
|
|
],
|
|
},
|
|
}
|
|
```
|
|
|
|
### Performance Optimization
|
|
|
|
1. Implement lazy loading for chat history.
|
|
2. Use React.memo for components that don't need frequent re-renders.
|
|
3. Optimize API calls with debouncing or throttling.
|
|
|
|
```typescript
|
|
import { useDebounce } from 'use-debounce'
|
|
|
|
const [value] = useDebounce(text, 1000)
|
|
```
|
|
|
|
Building a **React chatbot** offers diverse approaches, from no-code solutions to full-stack implementations. This article explored three methods: using Typebot for rapid deployment, integrating Typebot's API for customization, and building a complete solution from scratch.
|
|
|
|
Each approach provides unique benefits, allowing developers to choose based on their project requirements and technical expertise.
|
|
|
|
As chatbots continue to evolve, the potential for creating more intelligent, responsive, and personalized conversational interfaces in React applications is boundless.
|
|
|
|
<Cta />
|