import { option, createAction } from '@typebot.io/forge' import OpenAI, { ClientOptions } from 'openai' import { defaultOpenAIOptions } from '../constants' import { OpenAIStream } from 'ai' import { parseChatCompletionMessages } from '../helpers/parseChatCompletionMessages' import { isDefined } from '@typebot.io/lib' import { auth } from '../auth' import { baseOptions } from '../baseOptions' const nativeMessageContentSchema = { content: option.string.layout({ inputType: 'textarea', placeholder: 'Content', }), } const systemMessageItemSchema = option .object({ role: option.literal('system'), }) .extend(nativeMessageContentSchema) const userMessageItemSchema = option .object({ role: option.literal('user'), }) .extend(nativeMessageContentSchema) const assistantMessageItemSchema = option .object({ role: option.literal('assistant'), }) .extend(nativeMessageContentSchema) const dialogueMessageItemSchema = option.object({ role: option.literal('Dialogue'), dialogueVariableId: option.string.layout({ inputType: 'variableDropdown', placeholder: 'Dialogue variable', }), startsBy: option.enum(['user', 'assistant']).layout({ label: 'starts by', direction: 'row', defaultValue: 'user', }), }) export const options = option.object({ model: option.string.layout({ placeholder: 'Select a model', defaultValue: defaultOpenAIOptions.model, fetcher: 'fetchModels', }), messages: option .array( option.discriminatedUnion('role', [ systemMessageItemSchema, userMessageItemSchema, assistantMessageItemSchema, dialogueMessageItemSchema, ]) ) .layout({ accordion: 'Messages', itemLabel: 'message', isOrdered: true }), temperature: option.number.layout({ accordion: 'Advanced settings', label: 'Temperature', direction: 'row', defaultValue: defaultOpenAIOptions.temperature, }), responseMapping: option .saveResponseArray(['Message content', 'Total tokens']) .layout({ accordion: 'Save response', }), }) export const createChatCompletion = createAction({ name: 'Create chat completion', auth, baseOptions, options, getSetVariableIds: (options) => options.responseMapping?.map((res) => res.variableId).filter(isDefined) ?? [], fetchers: [ { id: 'fetchModels', dependencies: ['baseUrl', 'apiVersion'], fetch: async ({ credentials, options }) => { const baseUrl = options?.baseUrl ?? defaultOpenAIOptions.baseUrl const config = { apiKey: credentials.apiKey, baseURL: baseUrl ?? defaultOpenAIOptions.baseUrl, defaultHeaders: { 'api-key': credentials.apiKey, }, defaultQuery: options?.apiVersion ? { 'api-version': options.apiVersion, } : undefined, } satisfies ClientOptions const openai = new OpenAI(config) const models = await openai.models.list() return ( models.data .filter((model) => model.id.includes('gpt')) .sort((a, b) => b.created - a.created) .map((model) => model.id) ?? [] ) }, }, ], run: { server: async ({ credentials: { apiKey }, options, variables }) => { const config = { apiKey, baseURL: options.baseUrl, defaultHeaders: { 'api-key': apiKey, }, defaultQuery: options.apiVersion ? { 'api-version': options.apiVersion, } : undefined, } satisfies ClientOptions const openai = new OpenAI(config) const response = await openai.chat.completions.create({ model: options.model ?? defaultOpenAIOptions.model, temperature: options.temperature ? Number(options.temperature) : undefined, messages: parseChatCompletionMessages({ options, variables }), }) options.responseMapping?.forEach((mapping) => { if (!mapping.variableId) return if (!mapping.item || mapping.item === 'Message content') variables.set(mapping.variableId, response.choices[0].message.content) if (mapping.item === 'Total tokens') variables.set(mapping.variableId, response.usage?.total_tokens) }) }, stream: { getStreamVariableId: (options) => options.responseMapping?.find( (res) => res.item === 'Message content' || !res.item )?.variableId, run: async ({ credentials: { apiKey }, options, variables }) => { const config = { apiKey, baseURL: options.baseUrl, defaultHeaders: { 'api-key': apiKey, }, defaultQuery: options.apiVersion ? { 'api-version': options.apiVersion, } : undefined, } satisfies ClientOptions const openai = new OpenAI(config) const response = await openai.chat.completions.create({ model: options.model ?? defaultOpenAIOptions.model, temperature: options.temperature ? Number(options.temperature) : undefined, stream: true, messages: parseChatCompletionMessages({ options, variables }), }) return OpenAIStream(response) }, }, }, })