(openai) Add new models and remove tiktoken

Instead of computing total tokens with tiktoken we just attempt retries after trimming the first message
This commit is contained in:
Baptiste Arnaud
2023-06-16 16:50:23 +02:00
parent e54aab452a
commit 83f2a29faa
11 changed files with 331 additions and 245 deletions

View File

@@ -1,36 +1,19 @@
import { ExecuteIntegrationResponse } from '@/features/chat/types'
import { transformStringVariablesToList } from '@/features/variables/transformVariablesToList'
import prisma from '@/lib/prisma'
import {
ChatReply,
SessionState,
Variable,
VariableWithValue,
} from '@typebot.io/schemas'
import { SessionState } from '@typebot.io/schemas'
import {
ChatCompletionOpenAIOptions,
OpenAICredentials,
modelLimit,
} from '@typebot.io/schemas/features/blocks/integrations/openai'
import type {
ChatCompletionRequestMessage,
CreateChatCompletionRequest,
CreateChatCompletionResponse,
} from 'openai'
import { byId, isNotEmpty, isEmpty } from '@typebot.io/lib'
import { isEmpty } from '@typebot.io/lib'
import { decrypt, isCredentialsV2 } from '@typebot.io/lib/api/encryption'
import { saveErrorLog } from '@/features/logs/saveErrorLog'
import { updateVariables } from '@/features/variables/updateVariables'
import { parseVariables } from '@/features/variables/parseVariables'
import { parseVariableNumber } from '@/features/variables/parseVariableNumber'
import { encoding_for_model } from '@dqbd/tiktoken'
import got from 'got'
import { resumeChatCompletion } from './resumeChatCompletion'
import { isPlaneteScale } from '@/helpers/api/isPlanetScale'
import { isVercel } from '@/helpers/api/isVercel'
const minTokenCompletion = 200
const createChatEndpoint = 'https://api.openai.com/v1/chat/completions'
import { parseChatCompletionMessages } from './parseChatCompletionMessages'
import { executeChatCompletionOpenAIRequest } from './executeChatCompletionOpenAIRequest'
export const createChatCompletionOpenAI = async (
state: SessionState,
@@ -63,9 +46,8 @@ export const createChatCompletionOpenAI = async (
credentials.data,
credentials.iv
)) as OpenAICredentials['data']
const { variablesTransformedToList, messages } = parseMessages(
newSessionState.typebot.variables,
options.model
const { variablesTransformedToList, messages } = parseChatCompletionMessages(
newSessionState.typebot.variables
)(options.messages)
if (variablesTransformedToList.length > 0)
newSessionState = await updateVariables(state)(variablesTransformedToList)
@@ -74,177 +56,37 @@ export const createChatCompletionOpenAI = async (
options.advancedSettings?.temperature
)
try {
if (
isPlaneteScale() &&
isVercel() &&
isCredentialsV2(credentials) &&
newSessionState.isStreamEnabled
)
return {
clientSideActions: [{ streamOpenAiChatCompletion: { messages } }],
outgoingEdgeId,
newSessionState,
}
const response = await got
.post(createChatEndpoint, {
headers: {
Authorization: `Bearer ${apiKey}`,
},
json: {
model: options.model,
messages,
temperature,
} satisfies CreateChatCompletionRequest,
})
.json<CreateChatCompletionResponse>()
const messageContent = response.choices.at(0)?.message?.content
const totalTokens = response.usage?.total_tokens
if (isEmpty(messageContent)) {
console.error('OpenAI block returned empty message', response)
return { outgoingEdgeId, newSessionState }
}
return resumeChatCompletion(newSessionState, {
options,
outgoingEdgeId,
})(messageContent, totalTokens)
} catch (err) {
const log: NonNullable<ChatReply['logs']>[number] = {
status: 'error',
description: 'OpenAI block returned error',
}
if (err && typeof err === 'object') {
if ('response' in err) {
const { status, data } = err.response as {
status: string
data: string
}
log.details = {
status,
data,
}
} else if ('message' in err) {
log.details = err.message
}
}
state.result &&
(await saveErrorLog({
resultId: state.result.id,
message: log.description,
details: log.details,
}))
if (
isPlaneteScale() &&
isVercel() &&
isCredentialsV2(credentials) &&
newSessionState.isStreamEnabled
)
return {
clientSideActions: [{ streamOpenAiChatCompletion: { messages } }],
outgoingEdgeId,
logs: [log],
newSessionState,
}
}
}
const parseMessages =
(variables: Variable[], model: ChatCompletionOpenAIOptions['model']) =>
(
messages: ChatCompletionOpenAIOptions['messages']
): {
variablesTransformedToList: VariableWithValue[]
messages: ChatCompletionRequestMessage[]
} => {
const variablesTransformedToList: VariableWithValue[] = []
const firstMessagesSequenceIndex = messages.findIndex(
(message) => message.role === 'Messages sequence ✨'
)
const parsedMessages = messages
.flatMap((message, index) => {
if (!message.role) return
if (message.role === 'Messages sequence ✨') {
if (
!message.content?.assistantMessagesVariableId ||
!message.content?.userMessagesVariableId
)
return
variablesTransformedToList.push(
...transformStringVariablesToList(variables)([
message.content.assistantMessagesVariableId,
message.content.userMessagesVariableId,
])
)
const updatedVariables = variables.map((variable) => {
const variableTransformedToList = variablesTransformedToList.find(
byId(variable.id)
)
if (variableTransformedToList) return variableTransformedToList
return variable
})
const userMessages = (updatedVariables.find(
(variable) =>
variable.id === message.content?.userMessagesVariableId
)?.value ?? []) as string[]
const assistantMessages = (updatedVariables.find(
(variable) =>
variable.id === message.content?.assistantMessagesVariableId
)?.value ?? []) as string[]
let allMessages: ChatCompletionRequestMessage[] = []
if (userMessages.length > assistantMessages.length)
allMessages = userMessages.flatMap((userMessage, index) => [
{
role: 'user',
content: userMessage,
},
{ role: 'assistant', content: assistantMessages.at(index) ?? '' },
]) satisfies ChatCompletionRequestMessage[]
else {
allMessages = assistantMessages.flatMap(
(assistantMessage, index) => [
{ role: 'assistant', content: assistantMessage },
{
role: 'user',
content: userMessages.at(index) ?? '',
},
]
) satisfies ChatCompletionRequestMessage[]
}
if (index !== firstMessagesSequenceIndex) return allMessages
const encoder = encoding_for_model(model)
let messagesToSend: ChatCompletionRequestMessage[] = []
let tokenCount = 0
for (let i = allMessages.length - 1; i >= 0; i--) {
const message = allMessages[i]
const tokens = encoder.encode(message.content)
if (
tokenCount + tokens.length - minTokenCompletion >
modelLimit[model]
) {
break
}
tokenCount += tokens.length
messagesToSend = [message, ...messagesToSend]
}
encoder.free()
return messagesToSend
}
return {
role: message.role,
content: parseVariables(variables)(message.content),
} satisfies ChatCompletionRequestMessage
})
.filter(
(message) => isNotEmpty(message?.role) && isNotEmpty(message?.content)
) as ChatCompletionRequestMessage[]
const { response, logs } = await executeChatCompletionOpenAIRequest({
apiKey,
messages,
model: options.model,
temperature,
})
if (!response)
return {
variablesTransformedToList,
messages: parsedMessages,
outgoingEdgeId,
logs,
}
const messageContent = response.choices.at(0)?.message?.content
const totalTokens = response.usage?.total_tokens
if (isEmpty(messageContent)) {
console.error('OpenAI block returned empty message', response)
return { outgoingEdgeId, newSessionState }
}
return resumeChatCompletion(newSessionState, {
options,
outgoingEdgeId,
logs,
})(messageContent, totalTokens)
}

View File

@@ -0,0 +1,74 @@
import { ChatReply } from '@typebot.io/schemas'
import got, { HTTPError } from 'got'
import type {
CreateChatCompletionRequest,
CreateChatCompletionResponse,
} from 'openai'
const createChatEndpoint = 'https://api.openai.com/v1/chat/completions'
type Props = Pick<CreateChatCompletionRequest, 'messages' | 'model'> & {
apiKey: string
temperature: number | undefined
currentLogs?: ChatReply['logs']
isRetrying?: boolean
}
export const executeChatCompletionOpenAIRequest = async ({
apiKey,
model,
messages,
temperature,
currentLogs = [],
}: Props): Promise<{
response?: CreateChatCompletionResponse
logs?: ChatReply['logs']
}> => {
const logs: ChatReply['logs'] = currentLogs
if (messages.length === 0) return { logs }
try {
const response = await got
.post(createChatEndpoint, {
headers: {
Authorization: `Bearer ${apiKey}`,
},
json: {
model,
messages,
temperature,
} satisfies CreateChatCompletionRequest,
})
.json<CreateChatCompletionResponse>()
return { response, logs }
} catch (error) {
if (error instanceof HTTPError) {
if (error.response.statusCode === 400) {
const log = {
status: 'info',
description:
'Max tokens limit reached, automatically trimming first message.',
}
logs.push(log)
return executeChatCompletionOpenAIRequest({
apiKey,
model,
messages: messages.slice(1),
temperature,
currentLogs: logs,
})
}
logs.push({
status: 'error',
description: `OpenAI API error - ${error.response.statusCode}`,
details: error.response.body,
})
return { logs }
}
logs.push({
status: 'error',
description: `Internal error`,
})
return { logs }
}
}

View File

@@ -0,0 +1,90 @@
import { parseVariables } from '@/features/variables/parseVariables'
import { transformStringVariablesToList } from '@/features/variables/transformVariablesToList'
import { byId, isNotEmpty } from '@typebot.io/lib'
import { Variable, VariableWithValue } from '@typebot.io/schemas'
import { ChatCompletionOpenAIOptions } from '@typebot.io/schemas/features/blocks/integrations/openai'
import type { ChatCompletionRequestMessage } from 'openai'
export const parseChatCompletionMessages =
(variables: Variable[]) =>
(
messages: ChatCompletionOpenAIOptions['messages']
): {
variablesTransformedToList: VariableWithValue[]
messages: ChatCompletionRequestMessage[]
} => {
const variablesTransformedToList: VariableWithValue[] = []
const parsedMessages = messages
.flatMap((message) => {
if (!message.role) return
if (message.role === 'Messages sequence ✨') {
if (
!message.content?.assistantMessagesVariableId ||
!message.content?.userMessagesVariableId
)
return
variablesTransformedToList.push(
...transformStringVariablesToList(variables)([
message.content.assistantMessagesVariableId,
message.content.userMessagesVariableId,
])
)
const updatedVariables = variables.map((variable) => {
const variableTransformedToList = variablesTransformedToList.find(
byId(variable.id)
)
if (variableTransformedToList) return variableTransformedToList
return variable
})
const userMessages = (updatedVariables.find(
(variable) =>
variable.id === message.content?.userMessagesVariableId
)?.value ?? []) as string[]
const assistantMessages = (updatedVariables.find(
(variable) =>
variable.id === message.content?.assistantMessagesVariableId
)?.value ?? []) as string[]
let allMessages: ChatCompletionRequestMessage[] = []
if (userMessages.length > assistantMessages.length)
allMessages = userMessages.flatMap((userMessage, index) => [
{
role: 'user',
content: userMessage,
},
{ role: 'assistant', content: assistantMessages.at(index) ?? '' },
]) satisfies ChatCompletionRequestMessage[]
else {
allMessages = assistantMessages.flatMap(
(assistantMessage, index) => [
{ role: 'assistant', content: assistantMessage },
{
role: 'user',
content: userMessages.at(index) ?? '',
},
]
) satisfies ChatCompletionRequestMessage[]
}
return allMessages
}
return {
role: message.role,
content: parseVariables(variables)(message.content),
name: message.name
? parseVariables(variables)(message.name)
: undefined,
} satisfies ChatCompletionRequestMessage
})
.filter(
(message) => isNotEmpty(message?.role) && isNotEmpty(message?.content)
) as ChatCompletionRequestMessage[]
return {
variablesTransformedToList,
messages: parsedMessages,
}
}

View File

@@ -1,7 +1,7 @@
import { saveSuccessLog } from '@/features/logs/saveSuccessLog'
import { updateVariables } from '@/features/variables/updateVariables'
import { byId, isDefined } from '@typebot.io/lib'
import { SessionState } from '@typebot.io/schemas'
import { ChatReply, SessionState } from '@typebot.io/schemas'
import { ChatCompletionOpenAIOptions } from '@typebot.io/schemas/features/blocks/integrations/openai'
import { VariableWithUnknowValue } from '@typebot.io/schemas/features/typebot/variable'
@@ -11,7 +11,12 @@ export const resumeChatCompletion =
{
outgoingEdgeId,
options,
}: { outgoingEdgeId?: string; options: ChatCompletionOpenAIOptions }
logs,
}: {
outgoingEdgeId?: string
options: ChatCompletionOpenAIOptions
logs?: ChatReply['logs']
}
) =>
async (message: string, totalTokens?: number) => {
let newSessionState = state
@@ -48,5 +53,6 @@ export const resumeChatCompletion =
return {
outgoingEdgeId,
newSessionState,
logs,
}
}