📝 Add 'React Chatbot' blog post (#1633)
This commit is contained in:
788
ee/apps/landing-page/content/react-chatbot.mdx
Normal file
788
ee/apps/landing-page/content/react-chatbot.mdx
Normal file
@ -0,0 +1,788 @@
|
||||
---
|
||||
title: 'How to Build a React Chatbot: Three Methods Explained'
|
||||
description: 'Learn how to build a React chatbot using three methods: no-code, API integration, and full-stack development.'
|
||||
publishedAt: '2024-07-11'
|
||||
---
|
||||
|
||||
To enhance user engagement in your React application, adding a chatbot can be a game changer. You don't need to get overwhelmed by complex code. React chatbots offer interactive and responsive interfaces.
|
||||
|
||||
Building a React chatbot isn't as hard as it seems. This article explores three methods to build your own chatbot. We'll cover no-code solutions to full-stack implementations. Whether you're an experienced developer or new to React, you'll find an approach that fits your skill level and project needs. Ready to improve your user experience with a **custom React chatbot**? Let's dive in.
|
||||
|
||||
## What is a React Chatbot?
|
||||
|
||||
### Definition of a React Chatbot
|
||||
|
||||
A **React chatbot** is an interactive component in a React application. It simulates human-like conversations with users, enhancing engagement and delivering information efficiently.
|
||||
|
||||
### How Chatbots Work Within React Applications
|
||||
|
||||
React chatbots use React's component-based architecture to create modular and reusable chat interfaces. They usually include:
|
||||
|
||||
1. A chat window component
|
||||
2. Message display components
|
||||
3. Input field for user messages
|
||||
4. State management for conversation flow
|
||||
5. API integration for processing messages and generating responses
|
||||
|
||||
The chatbot's logic involves conditional rendering, hooks for state management, and asynchronous functions for API calls.
|
||||
|
||||
### Benefits of Integrating a Chatbot in Your React App
|
||||
|
||||
- **24/7 availability** for user inquiries
|
||||
- **Reduced customer support workload**
|
||||
- **Personalized user experiences**
|
||||
- **Streamlined information gathering**
|
||||
- **Improved user engagement and retention**
|
||||
|
||||
### Overview of Typebot as a No-Code Chatbot Builder
|
||||
|
||||
Typebot is an open-source platform that makes it easy to create chatbots for React applications. Its key features include:
|
||||
|
||||
- Drag-and-drop interface for bot design
|
||||
- Visual flow builder for conversation logic
|
||||
- Pre-built components like text bubbles, input fields, and buttons
|
||||
- Easy integration with React via API or embed code
|
||||
- Customizable themes to match your app's design
|
||||
|
||||
### Real-World Use Cases of React Chatbots
|
||||
|
||||
<Table
|
||||
headers={['Industry', 'Use Case', 'Example']}
|
||||
rows={[
|
||||
[
|
||||
'E-commerce',
|
||||
'Product recommendations',
|
||||
'Suggesting items based on browsing history',
|
||||
],
|
||||
[
|
||||
'Healthcare',
|
||||
'Symptom checker',
|
||||
'Guiding users through initial health assessments',
|
||||
],
|
||||
[
|
||||
'Finance',
|
||||
'Account management',
|
||||
'Helping users check balances and make transfers',
|
||||
],
|
||||
[
|
||||
'Education',
|
||||
'Course enrollment',
|
||||
'Assisting students in selecting and registering for classes',
|
||||
],
|
||||
[
|
||||
'Travel',
|
||||
'Booking assistance',
|
||||
'Helping users find and book flights or accommodations',
|
||||
],
|
||||
]}
|
||||
/>
|
||||
|
||||
**React chatbots** are versatile tools. They can significantly enhance user experience across various domains, providing immediate assistance and personalized interactions.
|
||||
|
||||
## Method 1: Creating a Simple React Chatbot Using Typebot
|
||||
|
||||
### Setting Up Typebot Account
|
||||
|
||||
1. Visit typebot.io and sign up for an account.
|
||||
2. Verify your email address.
|
||||
3. Log in to the Typebot dashboard.
|
||||
|
||||
### Designing Your Chatbot using Typebot's Drag-and-Drop Interface
|
||||
|
||||
1. Click "Create a new typebot".
|
||||
2. Choose a template or start from scratch.
|
||||
3. Add blocks to your flow:
|
||||
- Text bubbles for bot messages.
|
||||
- Input fields for user responses.
|
||||
- Buttons for multiple-choice options.
|
||||
4. Connect blocks to create conversation logic.
|
||||
5. Use conditional statements to branch conversations.
|
||||
|
||||
### Exporting and Integrating Typebot Code in React
|
||||
|
||||
1. In Typebot, go to "Share" > "Web".
|
||||
2. Choose the "React" embed option.
|
||||
3. Copy the provided code snippet.
|
||||
4. In your React project, install **Typebot libraries**:
|
||||
|
||||
```bash
|
||||
npm install @typebot.io/js @typebot.io/react
|
||||
```
|
||||
|
||||
5. Create a new component in your React app:
|
||||
|
||||
```jsx
|
||||
import { Bubble } from '@typebot.io/react'
|
||||
|
||||
const ChatbotComponent = () => {
|
||||
return <Bubble typebot="YOUR_TYPEBOT_ID" />
|
||||
}
|
||||
|
||||
export default ChatbotComponent
|
||||
```
|
||||
|
||||
### Adding Typebot Chatbot to Existing React Applications
|
||||
|
||||
1. Import the **ChatbotComponent** where needed:
|
||||
|
||||
```jsx
|
||||
import ChatbotComponent from './ChatbotComponent'
|
||||
|
||||
function App() {
|
||||
return (
|
||||
<div className="App">
|
||||
<h1>My React App</h1>
|
||||
<ChatbotComponent />
|
||||
</div>
|
||||
)
|
||||
}
|
||||
```
|
||||
|
||||
2. Customize the chatbot's appearance:
|
||||
|
||||
```jsx
|
||||
<Bubble
|
||||
typebot="your-typebot-id"
|
||||
theme={{ button: { backgroundColor: '#0042DA' } }}
|
||||
prefilledVariables={{
|
||||
'User Name': 'John Doe',
|
||||
'Page URL': window.location.href,
|
||||
}}
|
||||
/>
|
||||
```
|
||||
|
||||
Here is what you will get:
|
||||
|
||||
<Image
|
||||
src="/images/blog/react-chatbot/demo-chat-method-1.jpg"
|
||||
alt="Demo Chat Method 1"
|
||||
width={2074}
|
||||
height={1776}
|
||||
/>
|
||||
|
||||
### Running and Testing Your Simple React Chatbot
|
||||
|
||||
1. Start your React development server:
|
||||
|
||||
```bash
|
||||
npm start
|
||||
```
|
||||
|
||||
2. Open your app in a browser.
|
||||
3. Interact with the chatbot to test conversation flows.
|
||||
4. Check for:
|
||||
- Correct message display.
|
||||
- Proper input handling.
|
||||
- Accurate conditional logic execution.
|
||||
5. Use Typebot's analytics to monitor performance.
|
||||
6. Iterate on your design based on user interactions and feedback.
|
||||
|
||||
These steps show you how to quickly create and integrate a functional chatbot into your React application using **Typebot's no-code solution**.
|
||||
|
||||
<Cta />
|
||||
|
||||
## Method 2: Creating the Frontend and Calling the Typebot API
|
||||
|
||||
We will do the same thing, except that we will build our own chat UI. It will allow us to customize as we want.
|
||||
|
||||
### Creating a React App with Vite
|
||||
|
||||
1. Initialize a new React project:
|
||||
|
||||
```bash
|
||||
npm create vite@latest my-chatbot -- --template react-ts
|
||||
cd my-chatbot
|
||||
npm install
|
||||
```
|
||||
|
||||
2. Install additional dependencies:
|
||||
|
||||
```bash
|
||||
npm install axios daisyui@latest
|
||||
```
|
||||
|
||||
3. Configure Tailwind CSS and DaisyUI in `tailwind.config.js`:
|
||||
|
||||
```javascript
|
||||
module.exports = {
|
||||
content: ['./src/**/*.{js,jsx,ts,tsx}'],
|
||||
plugins: [require('daisyui')],
|
||||
}
|
||||
```
|
||||
|
||||
### Setting Up Typebot API
|
||||
|
||||
1. Create a Typebot account and design your chatbot flow.
|
||||
2. Generate an API token in Typebot settings.
|
||||
3. Note your Typebot's public ID.
|
||||
|
||||
### Creating Chatbot Components in React using Daisy UI
|
||||
|
||||
Create a `ChatComponent.tsx` file:
|
||||
|
||||
```tsx
|
||||
import React, { useState } from 'react'
|
||||
|
||||
const ChatComponent: React.FC = () => {
|
||||
const [messages, setMessages] = useState<
|
||||
Array<{ text: string; isUser: boolean }>
|
||||
>([])
|
||||
const [inputMessage, setInputMessage] = useState('')
|
||||
|
||||
const handleSendMessage = async () => {
|
||||
if (inputMessage.trim() === '') return
|
||||
|
||||
setMessages([...messages, { text: inputMessage, isUser: true }])
|
||||
setInputMessage('')
|
||||
|
||||
// API call will be implemented here
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-screen">
|
||||
<div className="flex-1 overflow-y-auto p-4">
|
||||
{messages.map((message, index) => (
|
||||
<div
|
||||
key={index}
|
||||
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
||||
>
|
||||
<div
|
||||
className={`chat-bubble ${
|
||||
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
||||
}`}
|
||||
>
|
||||
{message.text}
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
<div className="p-4 bg-base-200">
|
||||
<div className="flex">
|
||||
<input
|
||||
type="text"
|
||||
value={inputMessage}
|
||||
onChange={(e) => setInputMessage(e.target.value)}
|
||||
className="input input-bordered flex-1 mr-2"
|
||||
placeholder="Type your message..."
|
||||
/>
|
||||
<button onClick={handleSendMessage} className="btn btn-primary">
|
||||
Send
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
export default ChatComponent
|
||||
```
|
||||
|
||||
### Fetching Responses from Typebot API
|
||||
|
||||
Implement API calls in `handleSendMessage`:
|
||||
|
||||
```typescript
|
||||
import axios from 'axios'
|
||||
|
||||
const TYPEBOT_API_URL = 'https://typebot.io/api/v1/typebots'
|
||||
const PUBLIC_ID = 'your_public_id'
|
||||
const [sessionId, setSessionId] = useState<string | null>(null)
|
||||
|
||||
const handleSendMessage = async () => {
|
||||
if (inputMessage.trim() === '') return
|
||||
|
||||
setMessages([...messages, { text: inputMessage, isUser: true }])
|
||||
setInputMessage('')
|
||||
|
||||
try {
|
||||
let response
|
||||
if (!sessionId) {
|
||||
response = await axios.post(`${TYPEBOT_API_URL}/${PUBLIC_ID}/startChat`, {
|
||||
message: inputMessage,
|
||||
})
|
||||
setSessionId(response.data.sessionId)
|
||||
} else {
|
||||
response = await axios.post(
|
||||
`${TYPEBOT_API_URL}/${PUBLIC_ID}/continueChat`,
|
||||
{
|
||||
sessionId,
|
||||
message: inputMessage,
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
const botMessages = response.data.messages.map(
|
||||
(msg: { content: string }) => ({
|
||||
text: msg.content.richText[0].children
|
||||
.map((children) => children.text)
|
||||
.join(' '),
|
||||
isUser: false,
|
||||
})
|
||||
)
|
||||
|
||||
setMessages((prevMessages) => [...prevMessages, ...botMessages])
|
||||
} catch (error) {
|
||||
console.error('Error sending message:', error)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Handling User Inputs and Responses in UI
|
||||
|
||||
Update the UI to display bot responses:
|
||||
|
||||
```tsx
|
||||
<div className="flex-1 overflow-y-auto p-4">
|
||||
{messages.map((message, index) => (
|
||||
<div
|
||||
key={index}
|
||||
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
||||
>
|
||||
<div
|
||||
className={`chat-bubble ${
|
||||
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
||||
}`}
|
||||
>
|
||||
{message.text}
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
```
|
||||
|
||||
### Error Handling in API Calls
|
||||
|
||||
Implement error handling:
|
||||
|
||||
```typescript
|
||||
try {
|
||||
// API calls
|
||||
} catch (error) {
|
||||
console.error('Error in chat flow:', error)
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{ text: 'An error occurred. Please try again.', isUser: false },
|
||||
])
|
||||
}
|
||||
```
|
||||
|
||||
Finally the final result looks like this:
|
||||
|
||||
<Image
|
||||
src="/images/blog/react-chatbot/demo-chat-method-2.gif"
|
||||
alt="Demo Chat Method 2"
|
||||
width={800}
|
||||
height={320}
|
||||
/>
|
||||
### Deploying and Testing
|
||||
|
||||
1. Build your React app:
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
2. Deploy to a hosting service (e.g., Vercel, Netlify).
|
||||
3. Test thoroughly:
|
||||
- Conversation flow.
|
||||
- Error scenarios.
|
||||
- Performance under load.
|
||||
|
||||
By following these steps, you can create a custom **React chatbot frontend** that interacts with the Typebot API, providing a seamless chat experience for your users.
|
||||
|
||||
<Cta />
|
||||
|
||||
## Method 3: Building the Frontend and Backend Yourself
|
||||
|
||||
Here we will do the same thing, but by building our own backend!
|
||||
|
||||
### Initializing a React Project with Vite and TypeScript
|
||||
|
||||
1. Create a new Vite project:
|
||||
|
||||
```bash
|
||||
npm create vite@latest my-fullstack-chatbot -- --template react-ts
|
||||
cd my-fullstack-chatbot
|
||||
npm install
|
||||
```
|
||||
|
||||
2. Install additional dependencies:
|
||||
|
||||
```bash
|
||||
npm install axios daisyui@latest
|
||||
```
|
||||
|
||||
### Setting Up the Backend with Express.js
|
||||
|
||||
1. Create a `server` directory in the project root.
|
||||
2. Initialize a new Node.js project:
|
||||
|
||||
```bash
|
||||
cd server
|
||||
npm init -y
|
||||
npm install express cors dotenv
|
||||
npm install --save-dev typescript @types/express @types/node @types/cors
|
||||
```
|
||||
|
||||
3. Create a `tsconfig.json` file in the `server` directory:
|
||||
|
||||
```json
|
||||
{
|
||||
"compilerOptions": {
|
||||
"target": "es6",
|
||||
"module": "commonjs",
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"esModuleInterop": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Creating RESTful API Endpoints for Chatbot Responses
|
||||
|
||||
Create a `server.ts` file in the `server` directory:
|
||||
|
||||
```typescript
|
||||
import express from 'express'
|
||||
import cors from 'cors'
|
||||
import dotenv from 'dotenv'
|
||||
|
||||
dotenv.config()
|
||||
|
||||
const app = express()
|
||||
app.use(cors())
|
||||
app.use(express.json())
|
||||
|
||||
const PORT = process.env.PORT || 3001
|
||||
|
||||
app.post('/api/chat', (req, res) => {
|
||||
const userMessage = req.body.message
|
||||
// Chatbot logic will be implemented here
|
||||
res.json({
|
||||
response: `You said: "${userMessage}". This is a placeholder response.`,
|
||||
})
|
||||
})
|
||||
|
||||
app.listen(PORT, () => console.log(`Server running on port ${PORT}`))
|
||||
```
|
||||
|
||||
### Creating Business Logic
|
||||
|
||||
Implement a simple chatbot logic in `server.ts`:
|
||||
|
||||
```typescript
|
||||
const generateResponse = (message: string): string => {
|
||||
if (message.toLowerCase().includes('hello')) {
|
||||
return 'Hello! How can I assist you today?'
|
||||
} else if (message.toLowerCase().includes('help')) {
|
||||
return "I'm here to help. What do you need assistance with?"
|
||||
} else if (message.toLowerCase().includes('bye')) {
|
||||
return 'Goodbye! Have a great day!'
|
||||
} else {
|
||||
return "I'm not sure how to respond to that. Can you please rephrase your question?"
|
||||
}
|
||||
}
|
||||
|
||||
app.post('/api/chat', (req, res) => {
|
||||
const userMessage = req.body.message
|
||||
const botResponse = generateResponse(userMessage)
|
||||
res.json({ response: botResponse })
|
||||
})
|
||||
```
|
||||
|
||||
### Designing the Chatbot Interface in React using Daisy UI
|
||||
|
||||
Create a `ChatComponent.tsx` in your React src directory:
|
||||
|
||||
```tsx
|
||||
import React, { useState } from 'react'
|
||||
import axios from 'axios'
|
||||
|
||||
const ChatComponent: React.FC = () => {
|
||||
const [messages, setMessages] = useState<
|
||||
Array<{ text: string; isUser: boolean }>
|
||||
>([])
|
||||
const [inputMessage, setInputMessage] = useState('')
|
||||
|
||||
const handleSendMessage = async () => {
|
||||
if (inputMessage.trim() === '') return
|
||||
|
||||
setMessages([...messages, { text: inputMessage, isUser: true }])
|
||||
setInputMessage('')
|
||||
|
||||
try {
|
||||
const response = await axios.post('/api/chat', { message: inputMessage })
|
||||
setMessages([
|
||||
...messages,
|
||||
{ text: inputMessage, isUser: true },
|
||||
{ text: response.data.response, isUser: false },
|
||||
])
|
||||
} catch (error) {
|
||||
console.error('Error sending message:', error)
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-screen">
|
||||
<div className="flex-1 overflow-y-auto p-4">
|
||||
{messages.map((message, index) => (
|
||||
<div
|
||||
key={index}
|
||||
className={`chat ${message.isUser ? 'chat-end' : 'chat-start'}`}
|
||||
>
|
||||
<div
|
||||
className={`chat-bubble ${
|
||||
message.isUser ? 'chat-bubble-primary' : 'chat-bubble-secondary'
|
||||
}`}
|
||||
>
|
||||
{message.text}
|
||||
</div>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
<div className="p-4 bg-base-200">
|
||||
<div className="flex">
|
||||
<input
|
||||
type="text"
|
||||
value={inputMessage}
|
||||
onChange={(e) => setInputMessage(e.target.value)}
|
||||
className="input input-bordered flex-1 mr-2"
|
||||
placeholder="Type your message..."
|
||||
/>
|
||||
<button onClick={handleSendMessage} className="btn btn-primary">
|
||||
Send
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
export default ChatComponent
|
||||
```
|
||||
|
||||
### Deploying and Testing
|
||||
|
||||
1. Build your React app:
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
2. Deploy to a hosting service (e.g., Vercel, Netlify).
|
||||
3. Test thoroughly:
|
||||
- Conversation flow.
|
||||
- Error scenarios.
|
||||
- Performance under load.
|
||||
|
||||
By following these steps, you can create a full-stack **React chatbot** with a custom backend, providing a seamless chat experience for your users.
|
||||
|
||||
### Connecting Frontend to Backend
|
||||
|
||||
Update the axios call in `ChatComponent.tsx` to use an environment variable:
|
||||
|
||||
```typescript
|
||||
const API_URL = import.meta.env.VITE_API_URL || 'http://localhost:3001'
|
||||
|
||||
// In handleSendMessage:
|
||||
const response = await axios.post(`${API_URL}/api/chat`, {
|
||||
message: inputMessage,
|
||||
})
|
||||
```
|
||||
|
||||
### Error Handling and Debugging
|
||||
|
||||
Implement error handling in both frontend and backend:
|
||||
|
||||
```typescript
|
||||
// Frontend (ChatComponent.tsx)
|
||||
try {
|
||||
// API call
|
||||
} catch (error) {
|
||||
console.error('Error sending message:', error)
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{ text: 'An error occurred. Please try again.', isUser: false },
|
||||
])
|
||||
}
|
||||
|
||||
// Backend (server.ts)
|
||||
app.use(
|
||||
(
|
||||
err: Error,
|
||||
req: express.Request,
|
||||
res: express.Response,
|
||||
next: express.NextFunction
|
||||
) => {
|
||||
console.error(err.stack)
|
||||
res.status(500).send('Something broke!')
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Best Practices for State Management
|
||||
|
||||
For more complex applications, consider using state management libraries like [Redux](https://redux.js.org/) or Zustand:
|
||||
|
||||
```bash
|
||||
npm install @reduxjs/toolkit react-redux
|
||||
```
|
||||
|
||||
### Deploying Full-Stack Chatbot Application
|
||||
|
||||
1. Build the React frontend:
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
2. Compile TypeScript for the backend:
|
||||
|
||||
```bash
|
||||
npx tsc
|
||||
```
|
||||
|
||||
3. Deploy the backend to a Node.js hosting service (e.g., Heroku, DigitalOcean).
|
||||
4. Deploy the frontend to a static hosting service (e.g., Netlify, Vercel).
|
||||
5. Set up environment variables for API URL in frontend deployment.
|
||||
6. Ensure CORS is properly configured on the backend for the frontend's domain.
|
||||
|
||||
This method provides full control over both frontend and backend, allowing for custom logic and integrations beyond what's possible with no-code solutions.
|
||||
|
||||
## Advanced Features and Customization
|
||||
|
||||
### Using Conditional Logic in Chatbots
|
||||
|
||||
Implement branching conversations based on user inputs:
|
||||
|
||||
```typescript
|
||||
const generateResponse = (message: string, context: any): string => {
|
||||
if (context.stage === 'greeting') {
|
||||
if (message.toLowerCase().includes('help')) {
|
||||
context.stage = 'help'
|
||||
return 'What kind of help do you need? 1. Technical Support 2. Account Issues 3. Billing'
|
||||
} else {
|
||||
return 'Hello! How can I assist you today?'
|
||||
}
|
||||
} else if (context.stage === 'help') {
|
||||
if (message.includes('1')) {
|
||||
return 'For technical support, please describe your issue.'
|
||||
} else if (message.includes('2')) {
|
||||
return 'For account issues, please provide your account number.'
|
||||
} else if (message.includes('3')) {
|
||||
return "For billing inquiries, I'll transfer you to our billing department."
|
||||
}
|
||||
}
|
||||
return "I'm not sure how to respond. Can you please clarify?"
|
||||
}
|
||||
```
|
||||
|
||||
### Integrations with Third-Party Services
|
||||
|
||||
#### OpenAI Integration
|
||||
|
||||
```typescript
|
||||
import { Configuration, OpenAIApi } from 'openai'
|
||||
|
||||
// Initialize the OpenAI configuration
|
||||
const configuration = new Configuration({
|
||||
apiKey: process.env.OPENAI_API_KEY,
|
||||
})
|
||||
const openai = new OpenAIApi(configuration)
|
||||
|
||||
const generateResponse = async (
|
||||
message: string,
|
||||
context: any
|
||||
): Promise<string> => {
|
||||
try {
|
||||
const completion = await openai.createChatCompletion({
|
||||
model: 'gpt-3.5-turbo', // You can change this to a different model if needed
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: 'You are a helpful customer service assistant.',
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content: `Current stage: ${context.stage}. User message: ${message}`,
|
||||
},
|
||||
],
|
||||
max_tokens: 150, // Adjust as needed
|
||||
temperature: 0.7, // Adjust for more or less randomness in responses
|
||||
})
|
||||
|
||||
return (
|
||||
completion.data.choices[0].message?.content ||
|
||||
"I'm sorry, I couldn't generate a response."
|
||||
)
|
||||
} catch (error) {
|
||||
console.error('Error calling OpenAI API:', error)
|
||||
return "I'm sorry, there was an error processing your request."
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### Google Sheets Integration
|
||||
|
||||
```typescript
|
||||
import { google } from 'googleapis'
|
||||
|
||||
const sheets = google.sheets({
|
||||
version: 'v4',
|
||||
auth: process.env.GOOGLE_API_KEY,
|
||||
})
|
||||
|
||||
const logToSheet = async (message: string, response: string) => {
|
||||
await sheets.spreadsheets.values.append({
|
||||
spreadsheetId: 'YOUR_SHEET_ID',
|
||||
range: 'Sheet1!A:C',
|
||||
valueInputOption: 'USER_ENTERED',
|
||||
requestBody: {
|
||||
values: [[new Date().toISOString(), message, response]],
|
||||
},
|
||||
})
|
||||
}
|
||||
```
|
||||
|
||||
### Theming and Custom UI Design
|
||||
|
||||
Customize DaisyUI theme in `tailwind.config.js`:
|
||||
|
||||
```javascript
|
||||
module.exports = {
|
||||
// ...
|
||||
daisyui: {
|
||||
themes: [
|
||||
{
|
||||
mytheme: {
|
||||
primary: '#4B5563',
|
||||
secondary: '#60A5FA',
|
||||
accent: '#37CDBE',
|
||||
neutral: '#3D4451',
|
||||
'base-100': '#FFFFFF',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
### Performance Optimization
|
||||
|
||||
1. Implement lazy loading for chat history.
|
||||
2. Use React.memo for components that don't need frequent re-renders.
|
||||
3. Optimize API calls with debouncing or throttling.
|
||||
|
||||
```typescript
|
||||
import { useDebounce } from 'use-debounce'
|
||||
|
||||
const [value] = useDebounce(text, 1000)
|
||||
```
|
||||
|
||||
Building a **React chatbot** offers diverse approaches, from no-code solutions to full-stack implementations. This article explored three methods: using Typebot for rapid deployment, integrating Typebot's API for customization, and building a complete solution from scratch.
|
||||
|
||||
Each approach provides unique benefits, allowing developers to choose based on their project requirements and technical expertise.
|
||||
|
||||
As chatbots continue to evolve, the potential for creating more intelligent, responsive, and personalized conversational interfaces in React applications is boundless.
|
||||
|
||||
<Cta />
|
Reference in New Issue
Block a user