2
0
Files
bot/packages/forge/blocks/openai/actions/createChatCompletion.tsx

387 lines
11 KiB
TypeScript
Raw Normal View History

import { option, createAction } from '@typebot.io/forge'
import OpenAI, { ClientOptions } from 'openai'
import { defaultOpenAIOptions, maxToolCalls } from '../constants'
import { OpenAIStream, ToolCallPayload } from 'ai'
import { parseChatCompletionMessages } from '../helpers/parseChatCompletionMessages'
import { isDefined } from '@typebot.io/lib'
import { auth } from '../auth'
import { baseOptions } from '../baseOptions'
import {
ChatCompletionMessage,
ChatCompletionTool,
} from 'openai/resources/chat/completions'
import { parseToolParameters } from '../helpers/parseToolParameters'
import { executeFunction } from '@typebot.io/variables/executeFunction'
const nativeMessageContentSchema = {
2024-01-03 16:29:41 +01:00
content: option.string.layout({
inputType: 'textarea',
placeholder: 'Content',
}),
}
const systemMessageItemSchema = option
.object({
role: option.literal('system'),
})
.extend(nativeMessageContentSchema)
const userMessageItemSchema = option
.object({
role: option.literal('user'),
})
.extend(nativeMessageContentSchema)
const assistantMessageItemSchema = option
.object({
role: option.literal('assistant'),
})
.extend(nativeMessageContentSchema)
const parameterBase = {
name: option.string.layout({
label: 'Name',
placeholder: 'myVariable',
withVariableButton: false,
}),
description: option.string.layout({
label: 'Description',
withVariableButton: false,
}),
required: option.boolean.layout({
label: 'Is required?',
}),
}
export const toolParametersSchema = option
.array(
option.discriminatedUnion('type', [
option
.object({
type: option.literal('string'),
})
.extend(parameterBase),
option
.object({
type: option.literal('number'),
})
.extend(parameterBase),
option
.object({
type: option.literal('boolean'),
})
.extend(parameterBase),
option
.object({
type: option.literal('enum'),
values: option
.array(option.string)
.layout({ itemLabel: 'possible value' }),
})
.extend(parameterBase),
])
)
.layout({
accordion: 'Parameters',
itemLabel: 'parameter',
})
const functionToolItemSchema = option.object({
type: option.literal('function'),
name: option.string.layout({
label: 'Name',
placeholder: 'myFunctionName',
withVariableButton: false,
}),
description: option.string.layout({
label: 'Description',
placeholder: 'A brief description of what this function does.',
withVariableButton: false,
}),
parameters: toolParametersSchema,
code: option.string.layout({
inputType: 'code',
label: 'Code',
lang: 'javascript',
moreInfoTooltip:
'A javascript code snippet that can use the defined parameters. It should return a value.',
withVariableButton: false,
}),
})
const dialogueMessageItemSchema = option.object({
role: option.literal('Dialogue'),
dialogueVariableId: option.string.layout({
2024-01-03 16:29:41 +01:00
inputType: 'variableDropdown',
placeholder: 'Dialogue variable',
}),
startsBy: option.enum(['user', 'assistant']).layout({
label: 'starts by',
direction: 'row',
defaultValue: 'user',
}),
})
export const options = option.object({
model: option.string.layout({
placeholder: 'Select a model',
defaultValue: defaultOpenAIOptions.model,
fetcher: 'fetchModels',
}),
messages: option
.array(
option.discriminatedUnion('role', [
systemMessageItemSchema,
userMessageItemSchema,
assistantMessageItemSchema,
dialogueMessageItemSchema,
])
)
.layout({ accordion: 'Messages', itemLabel: 'message', isOrdered: true }),
tools: option
.array(option.discriminatedUnion('type', [functionToolItemSchema]))
.layout({ accordion: 'Tools', itemLabel: 'tool' }),
temperature: option.number.layout({
accordion: 'Advanced settings',
label: 'Temperature',
direction: 'row',
defaultValue: defaultOpenAIOptions.temperature,
}),
responseMapping: option
.saveResponseArray(['Message content', 'Total tokens'] as const)
.layout({
accordion: 'Save response',
}),
})
export const createChatCompletion = createAction({
name: 'Create chat completion',
auth,
baseOptions,
2024-01-03 16:29:41 +01:00
options,
getSetVariableIds: (options) =>
options.responseMapping?.map((res) => res.variableId).filter(isDefined) ??
[],
fetchers: [
{
id: 'fetchModels',
dependencies: ['baseUrl', 'apiVersion'],
fetch: async ({ credentials, options }) => {
const baseUrl = options?.baseUrl ?? defaultOpenAIOptions.baseUrl
const config = {
apiKey: credentials.apiKey,
baseURL: baseUrl ?? defaultOpenAIOptions.baseUrl,
defaultHeaders: {
'api-key': credentials.apiKey,
},
defaultQuery: options?.apiVersion
? {
'api-version': options.apiVersion,
}
: undefined,
} satisfies ClientOptions
const openai = new OpenAI(config)
const models = await openai.models.list()
return (
models.data
.filter((model) => model.id.includes('gpt'))
.sort((a, b) => b.created - a.created)
.map((model) => model.id) ?? []
)
},
},
],
run: {
server: async ({ credentials: { apiKey }, options, variables }) => {
const config = {
apiKey,
baseURL: options.baseUrl,
defaultHeaders: {
'api-key': apiKey,
},
defaultQuery: options.apiVersion
? {
'api-version': options.apiVersion,
}
: undefined,
} satisfies ClientOptions
const openai = new OpenAI(config)
const tools = options.tools
?.filter((t) => t.name && t.parameters)
.map((t) => ({
type: 'function',
function: {
name: t.name as string,
description: t.description,
parameters: parseToolParameters(t.parameters!),
},
})) satisfies ChatCompletionTool[] | undefined
const messages = parseChatCompletionMessages({ options, variables })
const body = {
model: options.model ?? defaultOpenAIOptions.model,
temperature: options.temperature
? Number(options.temperature)
: undefined,
messages,
tools: (tools?.length ?? 0) > 0 ? tools : undefined,
}
let totalTokens = 0
let message: ChatCompletionMessage
for (let i = 0; i < maxToolCalls; i++) {
const response = await openai.chat.completions.create(body)
message = response.choices[0].message
totalTokens += response.usage?.total_tokens || 0
if (!message.tool_calls) break
messages.push(message)
for (const toolCall of message.tool_calls) {
const name = toolCall.function?.name
if (!name) continue
const toolDefinition = options.tools?.find((t) => t.name === name)
if (!toolDefinition?.code || !toolDefinition.parameters) {
messages.push({
tool_call_id: toolCall.id,
role: 'tool',
content: 'Function not found',
})
continue
}
const toolParams = Object.fromEntries(
toolDefinition.parameters.map(({ name }) => [name, null])
)
const toolArgs = toolCall.function?.arguments
? JSON.parse(toolCall.function?.arguments)
: undefined
if (!toolArgs) continue
const { output, newVariables } = await executeFunction({
variables: variables.list(),
args: { ...toolParams, ...toolArgs },
body: toolDefinition.code,
})
newVariables?.forEach((v) => variables.set(v.id, v.value))
messages.push({
tool_call_id: toolCall.id,
role: 'tool',
content: output,
})
}
}
options.responseMapping?.forEach((mapping) => {
if (!mapping.variableId) return
if (!mapping.item || mapping.item === 'Message content')
variables.set(mapping.variableId, message.content)
if (mapping.item === 'Total tokens')
variables.set(mapping.variableId, totalTokens)
})
},
stream: {
getStreamVariableId: (options) =>
options.responseMapping?.find(
(res) => res.item === 'Message content' || !res.item
)?.variableId,
run: async ({ credentials: { apiKey }, options, variables }) => {
const config = {
apiKey,
baseURL: options.baseUrl,
defaultHeaders: {
'api-key': apiKey,
},
defaultQuery: options.apiVersion
? {
'api-version': options.apiVersion,
}
: undefined,
} satisfies ClientOptions
const openai = new OpenAI(config)
const tools = options.tools
?.filter((t) => t.name && t.parameters)
.map((t) => ({
type: 'function',
function: {
name: t.name as string,
description: t.description,
parameters: parseToolParameters(t.parameters!),
},
})) satisfies ChatCompletionTool[] | undefined
const messages = parseChatCompletionMessages({ options, variables })
const response = await openai.chat.completions.create({
model: options.model ?? defaultOpenAIOptions.model,
temperature: options.temperature
? Number(options.temperature)
: undefined,
stream: true,
messages,
tools: (tools?.length ?? 0) > 0 ? tools : undefined,
})
return OpenAIStream(response, {
experimental_onToolCall: async (
call: ToolCallPayload,
appendToolCallMessage
) => {
for (const toolCall of call.tools) {
const name = toolCall.func?.name
if (!name) continue
const toolDefinition = options.tools?.find((t) => t.name === name)
if (!toolDefinition?.code || !toolDefinition.parameters) {
messages.push({
tool_call_id: toolCall.id,
role: 'tool',
content: 'Function not found',
})
continue
}
const { output } = await executeFunction({
variables: variables.list(),
args:
typeof toolCall.func.arguments === 'string'
? JSON.parse(toolCall.func.arguments)
: toolCall.func.arguments,
body: toolDefinition.code,
})
// TO-DO: enable once we're out of edge runtime.
// newVariables?.forEach((v) => variables.set(v.id, v.value))
const newMessages = appendToolCallMessage({
tool_call_id: toolCall.id,
function_name: toolCall.func.name,
tool_call_result: output,
})
return openai.chat.completions.create({
messages: [
...messages,
...newMessages,
] as OpenAI.Chat.Completions.ChatCompletionMessageParam[],
model: options.model ?? defaultOpenAIOptions.model,
stream: true,
tools,
})
}
},
})
},
},
},
})